The Hacker Recipes
GitHubTwitterExegolTools
  • Introduction
  • Active Directory
    • Reconnaissance
      • DHCP
      • DNS
      • NBT-NS
      • Responder ⚙️
      • Port scanning
      • LDAP
      • BloodHound ⚙️
      • MS-RPC
      • enum4linux ⚙️
      • Password policy
    • Movement
      • Credentials
        • Dumping
          • SAM & LSA secrets
          • DPAPI secrets
          • NTDS secrets
          • LSASS secrets
          • DCSync
          • Group Policy Preferences
          • Network shares
          • Network protocols
          • Web browsers
          • In-memory secrets
          • Kerberos key list
          • 🛠️Cached Kerberos tickets
          • 🛠️Windows Credential Manager
          • 🛠️Local files
          • 🛠️Password managers
        • Cracking
        • Bruteforcing
          • Guessing
          • Spraying
          • Stuffing
        • Shuffling
        • Impersonation
      • MITM and coerced auths
        • ARP poisoning
        • DNS spoofing
        • DHCP poisoning
        • DHCPv6 spoofing
        • WSUS spoofing
        • LLMNR, NBT-NS, mDNS spoofing
        • ADIDNS poisoning
        • WPAD spoofing
        • MS-EFSR abuse (PetitPotam)
        • MS-RPRN abuse (PrinterBug)
        • MS-FSRVP abuse (ShadowCoerce)
        • MS-DFSNM abuse (DFSCoerce)
        • PushSubscription abuse
        • WebClient abuse (WebDAV)
        • 🛠️NBT Name Overwrite
        • 🛠️ICMP Redirect
        • 🛠️Living off the land
      • NTLM
        • Capture
        • Relay
        • Pass the hash
      • Kerberos
        • Pre-auth bruteforce
        • Pass the key
        • Overpass the hash
        • Pass the ticket
        • Pass the cache
        • Forged tickets
          • Silver tickets
          • Golden tickets
          • Diamond tickets
          • Sapphire tickets
          • RODC Golden tickets
          • MS14-068
        • ASREQroast
        • ASREProast
        • Kerberoast
        • Delegations
          • (KUD) Unconstrained
          • (KCD) Constrained
          • (RBCD) Resource-based constrained
          • S4U2self abuse
          • Bronze Bit
        • Shadow Credentials
        • UnPAC the hash
        • Pass the Certificate
        • sAMAccountName spoofing
        • SPN-jacking
      • DACL abuse
        • AddMember
        • ForceChangePassword
        • Targeted Kerberoasting
        • ReadLAPSPassword
        • ReadGMSAPassword
        • Grant ownership
        • Grant rights
        • Logon script
        • Rights on RODC object
      • Group policies
      • Trusts
      • Netlogon
        • ZeroLogon
      • Certificate Services (AD-CS)
        • Certificate templates
        • Certificate authority
        • Access controls
        • Unsigned endpoints
        • Certifried
      • SCCM / MECM
        • Privilege escalation
        • Post-exploitation
      • Exchange services
        • 🛠️PrivExchange
        • 🛠️ProxyLogon
        • 🛠️ProxyShell
      • Print Spooler Service
        • PrinterBug
        • PrintNightmare
      • Schannel
        • Pass the Certificate
      • Built-ins & settings
        • Security groups
        • MachineAccountQuota
        • Pre-Windows 2000 computers
        • RODC
    • Persistence
      • DC Shadow
      • SID History
      • Skeleton key
      • GoldenGMSA
      • AdminSDHolder
      • Kerberos
        • Forged tickets
        • Delegation to KRBTGT
      • Certificate Services (AD-CS)
        • Certificate authority
        • Access controls
        • Golden certificate
      • 🛠️DACL abuse
      • Shadow Principals (PAM)
  • Web services
    • Reconnaissance
      • HTTP response headers
      • Comments and metadata
      • Error messages
      • Site crawling
      • Directory fuzzing
      • Subdomains enumeration
      • Subdomain & vhost fuzzing
      • Web Application Firewall (WAF)
      • Content Management System (CMS)
      • Other technologies
      • Known vulnerabilities
    • Configuration
      • Default credentials
      • HTTP methods
      • HTTP security headers
        • Clickjacking
        • MIME type sniffing
        • 🛠️CORS (Cross-Origin Resource Sharing)
        • 🛠️CSP (Content Security Policy)
      • HTTP request smuggling
      • HTTP response splitting
      • Insecure Cookies
      • Denial of Service (DoS)
      • Identity and Access Management
        • 🛠️OAuth 2.0
    • Accounts and sessions
      • Security policies
      • Password change
      • 🛠️Password reset
      • Account creation
      • 🛠️Account deletion
      • 🛠️Logging in
    • User inputs
      • File inclusion
        • LFI to RCE
          • logs poisoning
          • phpinfo
          • file upload
          • PHP wrappers and streams
          • PHP session
          • /proc
        • RFI to RCE
      • Unrestricted file upload
      • SQL injection
      • XSS (Cross-Site Scripting)
      • CSRF (Cross-Site Request Forgery)
      • SSRF (Server-Side Request Forgery)
      • IDOR (Insecure Direct Object Reference)
      • ORED Open redirect
      • Content-Type juggling
      • XXE injection
      • Insecure JSON Web Tokens
      • 🛠️HTTP parameter pollution
      • 🛠️SSTI (Server-Side Template Injection)
      • 🛠️Insecure deserialization
      • 🛠️CRLF injection
      • 🛠️Arbitrary file download
      • 🛠️Directory traversal
      • 🛠️Null-byte injection
  • Systems & services
    • Reconnaissance
      • 🛠️Hosts discovery
      • Port scanning
    • Initial access (protocols)
      • 🛠️FTP
      • 🛠️SSH
      • 🛠️Telnet
      • 🛠️DNS
      • 🛠️HTTP
      • 🛠️Kerberos
      • 🛠️LDAP
      • 🛠️SMB
      • 🛠️RTSP
      • 🛠️MSSQL
      • 🛠️NFS
      • 🛠️MySQL
      • 🛠️RDP
      • 🛠️WinRM
    • Initial access (phishing)
    • Privilege escalation
      • Windows
        • 🛠️Credential dumping
        • 🛠️Unquoted path
        • 🛠️Scheduled tasks
        • 🛠️Weak service permissions
        • 🛠️Vulnerable drivers
        • 🛠️Account privileges
        • 🛠️Kernel exploitation
        • 🛠️Windows Subsystem for Linux
        • 🛠️Runas saved creds
        • Unattend files
        • 🛠️Network secrets
        • 🛠️Living off the land
      • UNIX-like
        • SUDO
        • SUID/SGID binaries
        • 🛠️Capabilities
        • 🛠️Network secrets
        • 🛠️Living off the land
    • Pivoting
      • 🛠️Port forwarding
      • 🛠️SOCKS proxy
  • Evasion
    • (AV) Anti-Virus
      • 🛠️Loader
      • 🛠️Dropper
      • 🛠️Obfuscation
      • 🛠️Process injection
      • 🛠️Stealth with C2
    • 🛠️(EDR) Endpoint Detection and Response
  • 🛠️Physical
    • Locks
    • Networking
      • Network Access Control
    • Machines
      • HID injection
      • Keylogging
      • BIOS security
      • Encryption
      • Airstrike attack
    • Super secret zones
      • 🍌Banana & chocolate cake
      • 🍳Omelette du fromage
      • 🍔Burger du seigneur
      • 🥞The Pancakes of Heaven
  • 🛠️Intelligence gathering
    • CYBINT
      • Emails
      • Web infrastructure
    • OSINT
    • GEOINT
  • 🛠️RADIO
    • RFID
      • Mifare Classic
        • Default keys
        • Darkside
        • Nested
    • Bluetooth
    • Wi-Fi
      • 🛠️WEP
      • 🛠️WPA2
      • 🛠️WPS
    • Wireless keyboard/mouse
  • 🛠️mobile apps
    • Android
      • Android Debug Bridge ⚙️
      • APK transform
      • Magisk
    • iOS
      • Certificate pinning
Powered by GitBook
On this page
  • Theory
  • Practice
  • Resources

Was this helpful?

  1. Active Directory
  2. Movement
  3. Kerberos

Shadow Credentials

PreviousBronze BitNextUnPAC the hash

Last updated 1 year ago

Was this helpful?

Theory

The Kerberos authentication protocol works with tickets in order to grant access. An ST (Service Ticket) can be obtained by presenting a TGT (Ticket Granting Ticket). That prior TGT can only be obtained by validating a first step named "pre-authentication" (except if that requirement is explicitly removed for some accounts, making them vulnerable to ). The pre-authentication can be validated symmetrically (with a DES, RC4, AES128 or AES256 key) or asymmetrically (with certificates). The asymmetrical way of pre-authenticating is called PKINIT.

The client has a public-private key pair, and encrypts the pre-authentication data with their private key, and the KDC decrypts it with the client’s public key. The KDC also has a public-private key pair, allowing for the exchange of a session key. ()

Active Directory user and computer objects have an attribute called msDS-KeyCredentialLink where raw public keys can be set. When trying to pre-authenticate with PKINIT, the KDC will check that the authenticating user has knowledge of the matching private key, and a TGT will be sent if there is a match.

There are multiple scenarios where an attacker can have control over an account that has the ability to edit the msDS-KeyCredentialLink (a.k.a. "kcl") attribute of other objects (e.g. member of a , has powerful ACEs, etc.). This allows attackers to create a key pair, append to raw public key in the attribute, and obtain persistent and stealthy access to the target object (can be a user or a computer).

Practice

In order to exploit that technique, the attacker needs to:

  1. be in a domain that supports PKINIT and containing at least one Domain Controller running Windows Server 2016 or above.

  2. be in a domain where the Domain Controller(s) has its own key pair (for the session key exchange) (e.g. happens when AD CS is enabled or when a certificate authority (CA) is in place).

  3. have control over an account that can edit the target object's msDs-KeyCredentialLink attribute.

The msDS-KeyCredentialLink feature was introduced with Windows Server 2016. However, this is not to be confused with PKINIT which was already present in Windows 2000. The msDS-KeyCredentialLink feature allows to link an X509 certificate to a domain object, that's all.

If those per-requisites are met, an attacker can

  1. create an RSA key pair

  2. create an X509 certificate configured with the public key

  3. create a structure featuring the raw public key and add it to the msDs-KeyCredentialLink attribute

  4. authenticate using PKINIT and the certificate and private key

pywhisker.py -d "FQDN_DOMAIN" -u "USER" -p "PASSWORD" --target "TARGET_SAMNAME" --action "list"

The "add" action from pywhisker is featured in ntlmrelayx.

ntlmrelayx -t ldap://dc02 --shadow-credentials --shadow-target 'dc01$'
Whisker.exe add /target:"TARGET_SAMNAME" /domain:"FQDN_DOMAIN" /dc:"DOMAIN_CONTROLLER" /path:"cert.pfx" /password:"pfx-password"

Nota bene

Computer objects can only edit their own msDS-KeyCredentialLink attribute if KeyCredential is not set already.

Resources

From UNIX-like systems, the msDs-KeyCredentialLink attribute of a user or computer target can be manipulated with the tool.

When the public key has been set in the msDs-KeyCredentialLink of the target, the certificate generated can be used with to obtain a TGT and further access.

From Windows systems, the msDs-KeyCredentialLink attribute of a target user or computer can be manipulated with the tool.

When the public key has been set in the msDs-KeyCredentialLink of the target, the certificate generated can be used with to obtain a TGT and further access.

User objects can't edit their own msDS-KeyCredentialLink attribute while computer objects can. This means the following scenario could work: from DC01, to DC02, make pywhisker edit DC01's attribute to create a Kerberos PKINIT pre-authentication backdoor on it, and have persistent access to DC01 with PKINIT and .

ASREProast
specterops.io
special group
KeyCredential
pyWhisker
Pass-the-Certificate
Whisker
Pass-the-Certificate
trigger an NTLM authentication
relay it
pass-the-cache
https://posts.specterops.io/shadow-credentials-abusing-key-trust-account-mapping-for-takeover-8ee1a53566abposts.specterops.io
GitHub - eladshamir/Whisker: Whisker is a C# tool for taking over Active Directory user and computer accounts by manipulating their msDS-KeyCredentialLink attribute, effectively adding "Shadow Credentials" to the target account.GitHub
GitHub - ShutdownRepo/pywhisker: Python version of the C# tool for "Shadow Credentials" attacksGitHub
Logo
Logo