The Hacker Recipes
GitHubTwitterExegolTools
  • Introduction
  • Active Directory
    • Reconnaissance
      • DHCP
      • DNS
      • NBT-NS
      • Responder ⚙️
      • Port scanning
      • LDAP
      • BloodHound ⚙️
      • MS-RPC
      • enum4linux ⚙️
      • Password policy
    • Movement
      • Credentials
        • Dumping
          • SAM & LSA secrets
          • DPAPI secrets
          • NTDS secrets
          • LSASS secrets
          • DCSync
          • Group Policy Preferences
          • Network shares
          • Network protocols
          • Web browsers
          • In-memory secrets
          • Kerberos key list
          • 🛠️Cached Kerberos tickets
          • 🛠️Windows Credential Manager
          • 🛠️Local files
          • 🛠️Password managers
        • Cracking
        • Bruteforcing
          • Guessing
          • Spraying
          • Stuffing
        • Shuffling
        • Impersonation
      • MITM and coerced auths
        • ARP poisoning
        • DNS spoofing
        • DHCP poisoning
        • DHCPv6 spoofing
        • WSUS spoofing
        • LLMNR, NBT-NS, mDNS spoofing
        • ADIDNS poisoning
        • WPAD spoofing
        • MS-EFSR abuse (PetitPotam)
        • MS-RPRN abuse (PrinterBug)
        • MS-FSRVP abuse (ShadowCoerce)
        • MS-DFSNM abuse (DFSCoerce)
        • PushSubscription abuse
        • WebClient abuse (WebDAV)
        • 🛠️NBT Name Overwrite
        • 🛠️ICMP Redirect
        • 🛠️Living off the land
      • NTLM
        • Capture
        • Relay
        • Pass the hash
      • Kerberos
        • Pre-auth bruteforce
        • Pass the key
        • Overpass the hash
        • Pass the ticket
        • Pass the cache
        • Forged tickets
          • Silver tickets
          • Golden tickets
          • Diamond tickets
          • Sapphire tickets
          • RODC Golden tickets
          • MS14-068
        • ASREQroast
        • ASREProast
        • Kerberoast
        • Delegations
          • (KUD) Unconstrained
          • (KCD) Constrained
          • (RBCD) Resource-based constrained
          • S4U2self abuse
          • Bronze Bit
        • Shadow Credentials
        • UnPAC the hash
        • Pass the Certificate
        • sAMAccountName spoofing
        • SPN-jacking
      • DACL abuse
        • AddMember
        • ForceChangePassword
        • Targeted Kerberoasting
        • ReadLAPSPassword
        • ReadGMSAPassword
        • Grant ownership
        • Grant rights
        • Logon script
        • Rights on RODC object
      • Group policies
      • Trusts
      • Netlogon
        • ZeroLogon
      • Certificate Services (AD-CS)
        • Certificate templates
        • Certificate authority
        • Access controls
        • Unsigned endpoints
        • Certifried
      • SCCM / MECM
        • Privilege escalation
        • Post-exploitation
      • Exchange services
        • 🛠️PrivExchange
        • 🛠️ProxyLogon
        • 🛠️ProxyShell
      • Print Spooler Service
        • PrinterBug
        • PrintNightmare
      • Schannel
        • Pass the Certificate
      • Built-ins & settings
        • Security groups
        • MachineAccountQuota
        • Pre-Windows 2000 computers
        • RODC
    • Persistence
      • DC Shadow
      • SID History
      • Skeleton key
      • GoldenGMSA
      • AdminSDHolder
      • Kerberos
        • Forged tickets
        • Delegation to KRBTGT
      • Certificate Services (AD-CS)
        • Certificate authority
        • Access controls
        • Golden certificate
      • 🛠️DACL abuse
      • Shadow Principals (PAM)
  • Web services
    • Reconnaissance
      • HTTP response headers
      • Comments and metadata
      • Error messages
      • Site crawling
      • Directory fuzzing
      • Subdomains enumeration
      • Subdomain & vhost fuzzing
      • Web Application Firewall (WAF)
      • Content Management System (CMS)
      • Other technologies
      • Known vulnerabilities
    • Configuration
      • Default credentials
      • HTTP methods
      • HTTP security headers
        • Clickjacking
        • MIME type sniffing
        • 🛠️CORS (Cross-Origin Resource Sharing)
        • 🛠️CSP (Content Security Policy)
      • HTTP request smuggling
      • HTTP response splitting
      • Insecure Cookies
      • Denial of Service (DoS)
      • Identity and Access Management
        • 🛠️OAuth 2.0
    • Accounts and sessions
      • Security policies
      • Password change
      • 🛠️Password reset
      • Account creation
      • 🛠️Account deletion
      • 🛠️Logging in
    • User inputs
      • File inclusion
        • LFI to RCE
          • logs poisoning
          • phpinfo
          • file upload
          • PHP wrappers and streams
          • PHP session
          • /proc
        • RFI to RCE
      • Unrestricted file upload
      • SQL injection
      • XSS (Cross-Site Scripting)
      • CSRF (Cross-Site Request Forgery)
      • SSRF (Server-Side Request Forgery)
      • IDOR (Insecure Direct Object Reference)
      • ORED Open redirect
      • Content-Type juggling
      • XXE injection
      • Insecure JSON Web Tokens
      • 🛠️HTTP parameter pollution
      • 🛠️SSTI (Server-Side Template Injection)
      • 🛠️Insecure deserialization
      • 🛠️CRLF injection
      • 🛠️Arbitrary file download
      • 🛠️Directory traversal
      • 🛠️Null-byte injection
  • Systems & services
    • Reconnaissance
      • 🛠️Hosts discovery
      • Port scanning
    • Initial access (protocols)
      • 🛠️FTP
      • 🛠️SSH
      • 🛠️Telnet
      • 🛠️DNS
      • 🛠️HTTP
      • 🛠️Kerberos
      • 🛠️LDAP
      • 🛠️SMB
      • 🛠️RTSP
      • 🛠️MSSQL
      • 🛠️NFS
      • 🛠️MySQL
      • 🛠️RDP
      • 🛠️WinRM
    • Initial access (phishing)
    • Privilege escalation
      • Windows
        • 🛠️Credential dumping
        • 🛠️Unquoted path
        • 🛠️Scheduled tasks
        • 🛠️Weak service permissions
        • 🛠️Vulnerable drivers
        • 🛠️Account privileges
        • 🛠️Kernel exploitation
        • 🛠️Windows Subsystem for Linux
        • 🛠️Runas saved creds
        • Unattend files
        • 🛠️Network secrets
        • 🛠️Living off the land
      • UNIX-like
        • SUDO
        • SUID/SGID binaries
        • 🛠️Capabilities
        • 🛠️Network secrets
        • 🛠️Living off the land
    • Pivoting
      • 🛠️Port forwarding
      • 🛠️SOCKS proxy
  • Evasion
    • (AV) Anti-Virus
      • 🛠️Loader
      • 🛠️Dropper
      • 🛠️Obfuscation
      • 🛠️Process injection
      • 🛠️Stealth with C2
    • 🛠️(EDR) Endpoint Detection and Response
  • 🛠️Physical
    • Locks
    • Networking
      • Network Access Control
    • Machines
      • HID injection
      • Keylogging
      • BIOS security
      • Encryption
      • Airstrike attack
    • Super secret zones
      • 🍌Banana & chocolate cake
      • 🍳Omelette du fromage
      • 🍔Burger du seigneur
      • 🥞The Pancakes of Heaven
  • 🛠️Intelligence gathering
    • CYBINT
      • Emails
      • Web infrastructure
    • OSINT
    • GEOINT
  • 🛠️RADIO
    • RFID
      • Mifare Classic
        • Default keys
        • Darkside
        • Nested
    • Bluetooth
    • Wi-Fi
      • 🛠️WEP
      • 🛠️WPA2
      • 🛠️WPS
    • Wireless keyboard/mouse
  • 🛠️mobile apps
    • Android
      • Android Debug Bridge ⚙️
      • APK transform
      • Magisk
    • iOS
      • Certificate pinning
Powered by GitBook
On this page
  • Theory
  • Resources

Was this helpful?

  1. Active Directory
  2. Movement

NTLM

PreviousLiving off the landNextCapture

Last updated 1 year ago

Was this helpful?

Theory

A common error people do is mix LM, NT, NTLM, Net-NTLM etc. Let's make things clear. There are hashing formats used to store user passwords: LM, NT. And there are authentication protocols used to authenticate users to remote resources: LM, NTLMv1, and NTLMv2.

  • LM hash and NT hash will refer to the hashing formats

  • LM, NTLM(v1), and NTLMv2, will refer to the authentication protocols

  • LMv1 and LMv2 are response formats that clients return when responding to NTLM_CHALLENGE NTLMv1 and NTLMv2 messages, respectively.

Yes.. this is confusing, but hey go tell this to Microsoft

The LM (LAN Manager) and NTLM (New Technology LM) authentication protocols are widely used in today's Microsoft environments (but mostly NTLM). It relies on a challenge-response scheme based on three messages to authenticate. In order to prove its identity, the authenticating client is asked to compute a response based on multiple variables including:

  • a random challenge sent by the server in a CHALLENGE_MESSAGE

  • a secret key that is the hash of the user's password

Authentication protocol
Algorithm (for the protocol)
Secret key

LM

DES-ECB

LM hash

NTLM

DES-ECB

NT hash

NTLMv2

HMAC-MD5

NT hash

The following table details the hashing algorithm used by each hashing format in Windows that allows the system to transform the user's password in a non-reversible format.

Hashing format
Algorithm (for the hash)

LM hash

NT hash

MD4

  • a bruteforce attack against the LM/NTLM response to retrieve the LM or NT hash it was derivated from

  • if found, a bruteforce/dictionary attack against the NT hash to retrieve the user's password

Resources

The following table details the secret key used by each authentication protocols and the cryptographic algorithm used to compute the response ().

based on DES ()

This is meant to protect the user's password from eavesdropping by implementing the "zero-knowledge proof" concept. Attackers (during a man-in-the-middle attack for example) would not be able to use the response to authenticate. In theory, they could only try to retrieve the user's password from an NTLM hash by operating two expensive (in time and resources) :

The problem is that Microsoft has poorly implemented the zero-knowledge proof concept in the LM and NTLM protocols. The LM or NT hash is used "as is" to compute the response. This means an attacker knowing an LM or NT hash could use it to authenticate as a user without knowing the user's password. This technique is called .

Attackers could also rely on to .

source
capturing authentication
bruteforce attacks
Capture
Cracking
Pass the hash
https://github.com/ShutdownRepo/The-Hacker-Recipes/blob/master/ad/movement/ntlm/broken-reference/README.md
forced authentications and phishing
relay incoming authentications
MITM and coerced auths
https://github.com/ShutdownRepo/The-Hacker-Recipes/blob/master/ad/movement/ntlm/broken-reference/README.md
learn more
😤
The NTLM Authentication Protocol and Security Support Provider
[MS-NLMP]: NT LAN Manager (NTLM) Authentication ProtocolMicrosoftLearn
Logo